

Cassini-Huygens Gas Chromatograph Mass Spectrometer: First Results

Interplanetary Probe Workshop #3
Athens, Greece

Hasso B. Niemann and the GCMS Team

NASA Goddard Space Flight Center Greenbelt, MD 20771

The GCMS Team

H. Niemann, Principle Investigator, NASA GSFC

- S. K Atreya², S. J. Bauer³, K. Biemann¹⁰, G.R. Carignan², J.E. Demick¹, T. Donahue², R. L. Frost⁷, D. Gautier⁴, J. A. Haberman¹, D.N. Harpold¹, D.M. Hunten⁵, G. Israel⁶, J. I. Lunine⁵, W. T. Kasprzak¹, K. Mauersberger¹¹, T.C. Owen⁸, M. Paulkovich¹, F. Raulin⁹, E. Raaen¹, S. H. Way¹
- 1. National Aeronautics and Space Administration
- 2. University of Michigan, Ann Arbor, MI 48109-2143, USA
- 3. Institute for Meteorology and Geophysics, University of Graz
- 4. LESIA, Observatoire de Paris-Meudon
- 5. Lunar and Planetary Laboratory, University of Arizona
- 6. Service d'Aéronomie du CNRS
- 7. University of Alabama, CMC
- 8. University of Hawaii
- 9. Laboratoire Interuniversitaire des Systèmes Atmosphériques, Université Paris 12 et Paris 7
- 10. Massachusetts Institute of Technology
- 11. Max Planck Institute

NASA

Operating Principle

GCMS Internal Design

Flight Configuration

Exhaust Tube

Pressurized Housing

Mounting Flange

Prom Board

Outlet Break off

Electrical Connectors

Thermal Inlet Isolator

GC Columns

Inlet Break off

Ion Pump HV Supplies

NASA

Heated Sample Inlet

Inlet

Exhaust Outlet

Front Shield

Inlet Thermistor

Inlet and Outlet Locations

Descent Sequence

Instrument Performance

- The instrument executed the pre-programmed sequence as expected
- Data were taken from about 146 km altitude to the surface
- 2h27m descent operation yielding 5634 mass spectra
- 1h10m surface operation yielding 2692 mass spectra
- Ion source 5 failed to operate early in the descent
 - Loss of data from one gas chromatograph column which resolved CO and N_2
- Loss of channel A effected time resolution and signal statistics, no loss of essential data

Early Data Analysis

• Data included both 25 eV and 70 eV electron energies, as well as data that both overflowed bit counters and rolled over the detector

Upper Atmosphere Averaged Spectrum (130-120 km)

Rare Gas Experiment Averaged Spectrum (with Background Subtracted)

Enrichment Cell Averaged Spectrum

Lower Atmosphere Averaged Spectrum

Averaged Surface Spectrum

Isotope Ratios

- ¹²C/¹³C and ¹⁴N/¹⁵N in the atmosphere were determined from methane (¹²CH₄ and ¹³CH₄ at m/z of 16 and 17) and nitrogen (¹⁴N¹⁴N and ¹⁵N¹⁴N at m/z of 28 and 29)
- D/H was determined from H₂ and HD
- Isotope ratios were calculated in altitude ranges with the best instrumental and statistical conditions
- Errors presented are due to signal statistics

Ratio	GCMS	Altitude for GCMS Calculations
$^{14}N/^{15}N$	183 <u>+</u> 5	40.9 km-35.9 km
12C/13C	82.3 <u>+</u> 1	18.2 km-6.14 km
D/H	$(2.1 \pm 0.04) \times 10^{-4}$	124.9 km- 66.8 km
$^{40}\text{Ar}/(N_2 + CH_4)$	$(4.32 \pm 0.1) \times 10^{-5}$	10 km to surface

Methane Mole Fraction Altitude Profile

Surface Response of N₂ and CH₄

Surface Response of C₂H₆ and CO₂

Surface Response of Cyanogen (C₂N₂)

Summary

- Increase in methane mole fraction near and at surface suggests a humid atmosphere and liquid methane in near sub-surface
- Primordial noble gases in low concentration- upper limit for ³⁶Ar is 3x10⁻⁷; Kr, Xe is 10⁻⁸
- As predicted, organic molecules were not detected in large quantities in the atmosphere
- Ethane, Carbon dioxide and Cyanogen detected on the surface
- Landed on organic rich surface

Lessons Learned

- The mission design was appropriate
- In hindsight additional surface oriented measurements would have been useful, including ACP surface measurements

